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ABSTRACT 

A range of α-aminoacids(1a-1h)have been converted efficiently to the corresponding β-

aminoalcohols: 2-amino-3-methylpentan-1-ol (isoleucinol) (2a), 2-amino-4-(methylthio)butan-1-

ol (methioninol) (2b), 2-amino-3-methylbutan-1-ol (valinol) (2c), 2-amino-3-(4’-hydroxyphenyl) 

propan-1-ol (tyrosinol) (2d), 2-amino-3-phenylethan-1-ol (phenylglycinol) (2e), 2-amino-3-

phenylpropan-1-ol (phenylalaninol) (2f), 2-aminoethan-1-ol (glycinol) (2g), and 2-

aminopropanol-1-ol (alaninol) (2h), with polymethylhydrosiloxane, PMHS, in the presence of 

catalytic tetrabutylammonium fluoride, TBAF with > 61% yield. Carboxylic acids and their 

derivatives such as amides(3a and 3b) have also been reducedto the corresponding amines: N-

ethylaniline(4a) and N-methylaniline(4b) with polymethylhydrosiloxane, PMHS, in the presence 

of catalytic tetrabutylammonium fluoride, TBAF with > 74% yield. 

Key words: Reduction, PMHS, TBAF, α-aminoacids, amides. 

 

1-INTRODUCTION 

There is a considerable interest in efficient routes to reducecarboxylic acids and their 

derivativessince it is one of the most important, fundamental and practical reactions. In 1991 

Buchwald’s group have used PMHS in combination with Cp2TiCl2, n-BuLi for the reduction
i-iii

. 

This was followed by the description of use of PMHS and titaniumisopropoxide, again for the 

reduction of esters
iv

. In related papers the use of polymethylhydrosiloxanein combination with 

TBAF has been studied
v-xi

. These processes, which are usually carried out in polar solvents such 

as DMSO or DMF, are described as heterogeneous and generally require an excess of fluoride. 

In 1980’s Corriu and Co-workers have shown that esters may be reduced with PMHS by fluoride 

or alkoxide-induced hydrosilylation
ix

.  
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In 1990’s, N. J. Lawrence and Co-workers described the efficient reduction of esters to alcohols 

with polymethylhydrosiloxane (PMHS) [Me3SiO(Me3HSiMe3)nSiMe3] in the presence of 

titanium isopropoxide or zirconium alkoxide
iv, xii, xiii

. This was followed by the description of the 

use of PMHS and catalytic fluoride
xiv

. 

We recently described the efficient reduction of glycine and alanine to aminoalcohols with 

polymethylhydrosiloxane (PMHS) in the presence of catalytic tetrabutylammoniumfluoride
xv

.We 

now report that the same transformation can be achieved but this time with an extension to a 

range of α-aminoacidsand carboxylic derivatives such as amides using tetrabutylammonium 

fluoride and polymethylhydrosiloxanewith some modifications.  

 

 

2-EXPERIMENTAL 

2.1- Methods 

All reactions were carried out under atmospheric air conditions. Solutions were dried over 

anhydrous magnesium sulphate (MgSO4) and evaporated under reduced pressure using a rotary 

evaporator (rotary evaporator (IKA Evaporator RV 06-ML). Solvents were purified according to 

standard methods. 

 

2.2- Physical measurements 
1
H NMR spectra were recorded on BRUCKER AC 400 MHz spectrometer at 0°C, and the 

chemical shifts are reported in ppm relative to the central line of the singlet for CDCl3 at 7.26 

ppm. Coupling constants (J values) are reported in hertz (Hz), and spin multiplicities are 

indicated by the following symbols: s (singlet), d (doublet), t (triplet), q (quartet), m 

(multiplet).
13

C NMR and DEPT were recorded on BRUCKER AC 101 MHz spectrometer at 0°C 

and all are reported in ppm relative to the central line of the triplet for CDCl3 at 77.16 ppm. The 

spectra reported are proton decoupled. 

IR spectra were recorded on SHIMADZU 830-FTIR spectrometer using KBrpellets.Melting 

points were recorded on a Gallenkamp melting point apparatus, and are uncorrected.Thin layer 

chromatography (TLC) was performed on precooked 0.25 mm silica gel plates 60F254purchased 

from Merck. 

 

2.3-Standard procedure 

To a stirred mixture of amino acid or amide(1 mmol) and tetrabutylammoniumfluoride (0.02 

mmol) in dry tetrahydrofuran (3 mmol). The mixture was stirred at room temperature until the 

reaction was complete (by TLC). Sodium hydroxide (5ml of a 3N solution) was added dropwise. 

After stirring vigorously overnight the solution was extracted with dichloromethane (3X150 ml). 

The combined organic extracts were washed with water, dried (MgSO4) and evaporated in 

Vacuo. The residue was purified chromatography (SiO2). Typical pure yield after purification is 

(58-80%)(Scheme-1). 
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The protocol is also an efficient method for the reduction of carboxylic acid derivatives such as 

amides to the corresponding amines(Scheme-2). 

 

3a: R= CH3

3b: R= H

4a: R= CH3

4b: R= H

1. PMHS, TBAF (cat.)

2. NaOH, H2O

R N
H

Scheme-2: Reduction of amides to their corresponding amines

R N
H

O

R' R'

R'= ph

R'= ph R'= ph

R'= ph

 
 

 

 

 

 

 

 

 

 

 

 

 



 

 

L. Sekhri et al. / Heterocyclic Letters Vol. 9| No.3|309-319|May-July| 2019 

 

312 
 

The results are summarized in Table-1 

Table 1: Yields for the reduction of substituted aminoacids 1 and amids 3

Yield (%)

1 2

CH3CH2(CH3)CH

CH3SCH2CH2

(CH3)2CH

HO CH2

R R

H

CH3

Yield (%)

3 4

67.47

61.03

85.14

58.14

75.16

74.13

Aminoacids Amides

Ph

PhCH2

H

CH3

65.30

70.20

75.20

80.65

R'

Ph

Ph

 
 

The amino alcohols 2a, 2b, 2c, 2d, 2e, 2f, 2g, 2h, 4a and 4b were identified by the following 

spectroscopic data: 

2.3.1- 2-amino-3-methylpentan-1-ol(isoleucinol) (2a): 

(Oil, Yield 67.47%; IR(ν cm
-1

): 3396.4 (L¸νOH et NH2) ; 2875.7- 2960.5 (F¸νC-H) ; 1656.7(F¸νN-H), 

1463.9(F¸νC-O-H), 1029 (F¸νC-O), 850 (f ¸νNH2); 
1
H NMR (400 MHz, CDCl3) δ 5.23 (1H, s,  -OH), 

3.24 (2H, m, CH2OH), 1,73 (1H, m, CH-NH2), 1.57 (2H, s, NH2),1.33 (2H, m, CHCH2CH3),  

1.14 (1H, m, CH2CHCH3), 0.88 (6H, m, 2 -CH3); 
13

C NMR (101 MHz, CDCl3) 66.39 (-CH2OH), 

57.39 [-CH(NH2)], 52.15 (-CH-), 22.57 (-CH2CH3), 18.22 (CHCH3), 12.16 (CH2CH3). 

 

2.3.2-2-amino-4-(methylthio)butan-1-ol(methioninol) (2b): 
Yield: 61.03%; IR(ν cm

-1
): 3398.3 (L¸νOH et NH2) ; 2873.7- 2935.5 (F¸ νC-H) ; 1662.5 (F¸ νN-H) ; 

1465.8(F¸νC-O-H ; 1029.9 (F¸ νC-O) ; 883.3 (f¸ νNH2) ; 
1
H NMR (400 MHz, CDCl3) δ 3.65 (1H, s, 

OH), 3.35 (2H, m, CH2OH), 2.10-2.09 (1H, m, CH-NH2), 1.68 (2H, m, S-CH2),  1.47 (3H, m, S-

CH3), 1.01 (4H, t, J = 7.3 Hz, NH2 and CH-CH2-CH2); 
13

C NMR (101 MHz, CDCl3) δ 58.83 (-

CH2OH), 24.00 (-CH(NH2)), 19.66 (-CH2-S-), 15.05 (-CH2-), 13.59 (CH3). 

 

2.3.3- 2-amino-3-methylbutan-1-ol (valinol) (2c) 

Yield: 85.14%; IR (ν cm
-1

): 3400. (L¸ νOH et NH2) ; 2873.7- 2960.5 (F¸ νC-H) ; 1558.4 (F¸ νN-H), 

1488.9 (F¸ νC-O-H), 1033.8 (F¸ νC-O) ;883.3 (f¸νNH2); 
1
H NMR (400 MHz, CDCl3) δ 3.57 (1H, dt, 
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J
2
=10.68Hz, J

1
=2.64 Hz, CH2OH), 3.18 (1H, t, J=7.3Hz, CH2OH), 2.73 (2H, S, NH2), 2.43 (1H, 

m, CHNH2), 1.48 (1H, m, CH(CH3)2), 0.78 (6H, dd, J
1
=6.97 Hz, J

2
=3.85 Hz, 2 -CH3) ; 

13
C NMR 

(101 MHz, CDCl3) δ 64.32 (CH2OH), 58.30 [-CH(NH2)], 30.81 [-CH(CH3)2], 19.23 (-CH3), 

18.25 (-CH3). 

2.3.3-2-amino-3-(4’-hydroxyphenyl) propan-1-ol (tyrosinol) (2d): 

Yield 58.14%; IR (ν cm
-1

): 3360-3300. (νOH et NH2); 2873.7- 2935.5 (F¸ νC-H) ; 1662.5 (F¸ νN-H) ; 

1465.8 (F¸νC-O-H; 1029.9 (F¸ νC-O) ; 883.3 (f¸ νNH2);
1
H NMR (CDCl3; 400 MHz): δ (ppm): 2.7 

(1H, m, C6H4HCH), 2.9 (1H, m, C6H4HCH), 3.1 (1H, m, -HCHNH2), 3.2 (1H, m, -HCHOH), 3.5 

(1H, m, -HCHOH), 3.6 (1H, m, OH), 5.1(2H, s, brs, NH2), 5.3(1H, s, C6H4OH), 6.7 (2H, m, 3, 5 

Ar-H),  7.1 (2H, m, 3, 5 Ar-H); 
13

C NMR(CDCl3; 101 MHz): δ155.8 (C, Ar-OH)); 130.7 (3, 5 C, 

Ar); 116.2 (2, 6 C, Ar); 64.9 (CH2OH); 53.9 (C-NH2); 39.6 (C6H5-CH2).This aminoalcohol was 

identified by comparison its spectra with that of an authentic sample
xiv

. 

 

2.3.4-2-amino-3-phenylethan-1-ol (phenylglycinol) (2e): 
1
H NMR (CDCl3; 400 MHz): δ(ppm): 2.0  (3H, s, brs,NH2, OH), 3.5  (1H, t, J=8.3 Hz, CHNH2), 

3.7 (1H, dd, J=8.3, 4.2 Hz, HCHOH),  4.1 (1H, dd, J=8.3, 4.2 Hz, HCHOH), 7.2-7.5 (5H, m, Ar-

H); 
13

C NMR(CDCl3; 75 MHz): δ 58.3 (CH); 67.7 (CH2); 127.5 (CH, Ar); 128.4 (CH, Ar); 129.5 

(CH, Ar); 142.0 (C, Ar). This aminoalcohol was identified by comparison its spectra with that of 

an authentic sample
xvi

. 

 

2.3.5-2-amino-3-phenylpropan-1-ol (phenylalaninol) (2f): 

m.p. 90-92°C [lit.
xviii

m.p. 90-92°C)];IR (ν cm
-1

): 3360-3300. (νOH et NH2); 
1
H NMR (CDCl3; 400 

MHz): δ (ppm): 1.5-2.1  (3H, s, brs, NH2, OH), 2.5  (1H, dd, J=13, 9 Hz, HCHC6H5), 2.8  (1H, 

dd, J=13, 9 Hz, HCHC6H5), 3.1 (1H, m, CHNH2),  3.5 (1H, dd, J=11,7 Hz, HCHOH), 4.1 (1H, 

dd, J=11,7 Hz, HCHOH),  7.1-7.4 (5H, m, Ar-H); 
13

C NMR(CDCl3; 101 MHz): δ40.4 (PhCH2); 

54.0 (CH); 65.9 (CH2OH); 126.5 (CH, Ar); 128.4 (CH, Ar); 129.0 (CH, Ar); 138.0 (C, Ar); m/z 

(FAB): 466 (24), 311 (4), 303 [(2M+H),
+
 11], 285 (9), 152 [(M+H),

+
 100], 136 [(M-OH),

+
5], 

120 (21), 105 (10), 91 (55).This aminoalcohol was identified by comparison its spectra with that 

of an authentic sample
xvi

. 

 

2.3.6-2-aminoethan-1-ol (glycinol) (2g): 

IR (ν cm
-1

): 3360-3300. (νOH et NH2); 
1
H NMR (CDCl3; 400 MHz): δ (ppm): 1.1  (3H, m, CH3), 

2.8  (2H, t, J=8.0 Hz, CH2NH2), 3.7  (2H, t, CH2OH); 
13

C NMR(CDCl3; 101 MHz): δ 40.0 

(CH2NH2); 63.7 (CH2OH)
xv

. 

 

2.3.7-2-aminopropanol-1-ol (alaninol) (2h): 

IR (ν cm
-1

): 3360-3300. (νOH et NH2); 
1
H NMR (CDCl3; 400 MHz): δ (ppm): 2.0  (3H, s, brs,NH2, 

OH), 2.0(3H, s, brs,NH2, OH), 3.0 (1H, m, CHNH2), 3.7 (1H, m, HCHOH), 3.9 (1H, 

m,HCHOH); 
13

C NMR(CDCl3; 101 MHz): δ 20.0 (CH3); 50.8 (CH), 127.5 (CH2)This 

aminoalcohol was identified by comparison its spectra with that of an authentic sample
xvi

. 

 

2.3.4-N-ethylaniline (4a): 

Yield 75.64%;IR (ν cm
-1

): 3259.5-3300 (L ¸ ν NH) ; 3050 (m¸ νC-H) ;  2950 (m¸ νC-H) ; 1608.8- 

1662.5 (F¸νc=c) ; 1598.9(F¸νN -H) ; 1263.3 (m¸ νC-N) aryl ; 752.2 (F¸νNH);
1
H NMR (400 MHz, 

CDCl3) δ 7.24 (1H, m, NH), 7.12 [2H, t, J = 7.9 Hz, C3 and C3*(ph)], 6.72 [1H,  t, J = 7.26 Hz, 

C4(ph)], 6.56 and 6.62 [2H, dd, J = 1.09 Hz, J = 7.46 Hz, 2C2 and C2*(ph)], 3.53 (2H, m, CH2), 
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1.42 (3H, t, CH3);
13

C NMR (101 MHz, CDCl3) δ146.55 [1C, NH-C1(ph)], 129.33 [2C, C3and 

C3*(ph)], 118.52 [1C, C4(ph)], 115.21 [2C, C2and C2*(ph)], 23.96 (1C, CH2-NH), 13.71 (1C, 

CH3). 

2.3.5-N-methylaniline(4b): 

Yield 74.13%; IR (ν cm
-1

): 3355.9 (L¸ν NH) ; 3035.7 (m¸νC-H) ; 2873.5- 2950 (m¸νC-H); 1608.8-

1620.1 (F¸νc=c) ; 1498.6(F¸νN -H) ; 1278.7 (F¸νC-N) aryl ; 752.2 (F¸νNH); 
1
H NMR (400 MHz, 

CDCl3) δ 9.20 (1H, s, NH), 7.44 [2H, d, J = 7.76 Hz, 2C2 and C2*(ph)] 7.09 [2H, t, J = 7.91 Hz, 

C3 and C3*(ph)], 6. 90 [1H, t, J = 7.39 Hz, C4(ph)],  3.60 (3H, m, CH3); 
13

C NMR (101 MHz, 

CDCl3) δ 137.25 [1C, NH-C1(ph)], 127.31 [2C, C3 and C3*(ph)], 122.58 [1C, C4(ph)], 118.96 

[2C, C2 and C2*(ph)], 66.53 (1C, CH3). 

 

 

3-RESULTS AND DISCUSSION 

As part of our studies on the reduction of aminoacids with PMHS, we found that catalytic 

tetrabutylammonium fluoride (TBAF) (0.02 mole %) is a remarkable homogeneous catalyst for 

this process
xv

.  

As expected two equivalents of Si-H are required for the reduction one aminoacid to the 

corresponding aminoalcohol: The first to reduce an aminoacid to an aminoaldehyde, and the 

second to reduce an aminoaldehyde to an aminoaldehyde. The impressive rate acceleration is 

possibly due to the interamolecular transfer of nucleophile from the silicate to another silicon 

atom, as illustrated in Scheme-3 via 1,3-mode of transfer, a process that is repeated over and 

over again as the nucleophile travels along the polymer backbone
xvi

. The corresponding process 

of nucleophile transfer in an intermolecular sense is presumably much slower. This process is 

called “Zipper”catalysis, in detail
xii

.  
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Scheme-3: Proposed mechanism of nucleophile-promoted “zipper catalysis” 
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Reduction of carboxylic acids and their derivatives such as amides has been examined with a 

variety of complex metal hydrides and metal hydrides such as lithium aluminium hydride, 

lithium trimethoxyaliminohydride, etc
xvii, xviii

. The most common reagent, lithium aluminium 

hydride, has been widely applied to such reductions.  

     In 1994, J.W. Simek and Co-workers described the efficient reduction of carboxylic acid 

group to alcohols using NaBH4 method with either electrophile can be modified to any scale; the 

use of I2 as the electrophile performed better at the semi- micro scale than the H2SO4method
xviii

. 

In our protocol, the use of polymethylhydrosiloxane, PMHS, providesr an alternative method 

forthe reduction of carboxylic acids and their derivatives.For such reduction, PMHS, can often 

successfully applied unlike diborane for such reductions occurs with unsaturated derivatives, 

such as N,N-dimethyl cinnamamide,since dborane rapidly adds to double bond. 
 

Stoichiometrically, two hydrides are required to reduce one amide to the corresponding amine: 

The first to reduce an amide to the corresponding imine, and the second to reduce an imine to an 

amine(Scheme-4). As is typical for PMHS reactions, a significant excess of reagents is used to 

assure complete reduction. 
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Scheme-4: Proposed mechanism of nucleophile-promoted “zipper catalysis” 
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3-CONCLUSION 

       In summary, we have shown that polymethylhydrosiloxane in combination with catalytic 

TBAF is an excellent reducing agent for the mild reduction of aminoacids and carboxylic 

derivatives such as amides.  
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